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Abstract 

The high costs for creating and using traditional simulators induced both by technical effort, 

which extends over a long period, but also by the need for permanent updating during this 

period, to improve accuracy by using a limited range of settings, bring to the fore an 

alternative, namely: data-based methods for physical simulation; they are a much more 

attractive option for interactive applications in terms of their ability to trade precomputation 

and memory footprint for better performance while running. Also trained physics engines 

might come to offer better simulations as the networks can be configured to take as input 

data from real-world measurements, thus it can combine the best from the real-time 

simulation engines that emphases on fast simulations but do not offer a real-world-like 

simulation, and high accuracy simulation engines and targets real-world simulations but 

require high computational resources. This paper aims to construct a neural network that 

learns how the impulses between two objects react when they make a contact, by using an 

already implemented physics engine for generating the training datasets and to compare the 

results of the trained engine versus the original one. Although this has been done 

successfully, the proposed neural network managing to score a prediction rate with values 

between 55 and 89% depending on the test “scenario”, improvements can be made to 

increase performance and to obtain a suitable accuracy (over 90%, even 95%), thus 

achieving the goal of completely replacing the physics engine.  

Keywords: Neural Networks, Physics Engine, Collision Optimizer. 

 

1. Introduction 

State-of-the-art physics engines [1]-[3] use different equations of motions, or a combination 

of them to simulate how objects with defined parameters like mass and volume behave, 

especially in contact with each other. Some of these equations are Lagrange multiplier [4], 
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Jakobsen [5], Impulse dynamics [6], and so on. These engines can also be split in two types: 

high-accuracy physics engines, and real-time physics engines [7]. 

The first type of physics engines has more complex defined equations of motions to 

simulate an environment as best as possible, but with the cost of high performance, also 

needed from the systems where the simulations are running. 

The latter type is much faster [7], usually being used in video games or movies where the 

frame rates per second matter for a better user experience, but they also come with more 

inaccurate simulations, as they make predictions instead of complete calculations. 

The idea to use neuronal networks and machine learning comes quite naturally, as once the 

network is trained, the predicted result is made almost instantaneous, especially on a parallel 

system like a GPU [8].  

As a physics engine, in this paper it is used a lighter version of the Box2D [9], which is a 

simple rigid body engine that works only with simple 2D objects like squares and circles 

and implements the impulse dynamics equations of motion. This engine consists of three 

modules, namely: Common, Collision and Dynamics. The first module refers to code for 

allocation, math, and settings; the second module defines shapes, a broad-phase and 

collision functions/queries; and the final module gives the simulation world, bodies, 

fixtures and joints [9]. The main loop of the Box2D-Lite physics engine is illustrated in Fig. 

1. 

 

 

 

   

  

 

Fig.1. The main loop of the Box2D-Lite physics engine. 

The collision detector comes with two phases: a broad phase, and a narrow one [9]. The 

broad phase finds pairs of overlapping boxes and creates arbiters for every pair. Each 

created, or updated arbiter performs a narrow phase collision, where it searches for the 

normal vector with the minimum penetration, as can be observed in Fig. 2. 
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Fig.2. Narrow phase, box versus box collision. 

The next step, after the collision detection, is applying the forces on the two collided bodies. 

In this step, the engine applies Newton’s 2nd law for velocity and angular velocity on each 

object in the scene. 

The third step is the “solve constraints” step, where the impulse between the two objects is 

calculated using Newton’s 2nd and 3rd laws for the relative velocity at the contact point. 

From this step, the direction and magnitude of the impulse are obtained and thus the new 

instantly changed velocities of the objects after the contact can be calculated [10]. 

The initial velocity and angular velocity of the two objects that are about to collide are taken 

as inputs for the proposed network, and the “solve constraints” step that calculates the 

resulting velocity is replaced with the network that predicts these results. Several random 

tests are generated, with objects in different situations, for all these inputs and their 

corresponding Box2D-Lite engine outputs (the changed velocity and direction) a dataset is 

created which is then used to train the neural network. 

 

2. Related works  

In [11] data-driven methods simulate deformation effects, including external forces and 

collisions, allegedly 300× to 5000× faster than standard offline simulation, using the same 

approach for collecting training data through an offline engine and feeding it to the neuronal 

network. 

Paper [12] describes a hybrid engine consisting of a standard physics engine for the new 

cases, and the “learned” engine for fast calculation of results for the “already met” cases. 

The standard physics engine takes new unseen inputs, calculates the output, and feeds the 

neuronal engine so that it can learn from the new experience. This process is illustrated in 

Fig. 3. 



Journal of Information Systems & Operations Management, Vol. 15.2, December 2021 
 

Pag. 178 / 309 

 

Fig.3. SAIN - A simulator-augmented interaction network, where 𝑠0 is the initial state, 𝑎𝑡 

is the action at time t and 𝑠𝑡 is the prediction by the physics engine at time t [12]. 

In [13] is trained an engine for fluid-based simulations using the authors’ framework for 

neuronal networks called Graph Network-based Simulators (GNS). The aforementioned 

framework is used to perform particle simulations, by mapping every particle in a graph 

and using a messaging system in the graph between particles for exchanging energy and 

momentum among their neighbors. The accuracy of the computed predictions obtained by 

this engine, versus their ground truths, can be observed in Fig. 4. 

 

Fig.4. Prediction made by the trained engine versus the ground truth of the Navier-Stokes 

equations for fluids (a. “goop”- a viscous, plastically deformable material; b. water; c. 

sand; d. their interaction with rigid obstacles - WaterRamps domain; e. multiple materials 

and their interaction - MultiMaterial domain; f. high-res turbulence, trained on 

WaterRamps; g. multi-material interactions with unseen objects, trained on MultiMaterial 

and h. generalizing on larger domains, trained on WaterRamps); image taken from [13]. 

In association with [11], [12], [13], neuronal networks promise to deliver both accurate and 

fast simulation, which is a big improvement in many scientific domains. Also, the neuronal 

networks tend to be more prone to parallelization than some numerical methods that are 

used in standard simulations. They may use more naturally multi-core technologies like 

GPUs, which now come with special computing units for machine learning, an example, in 
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this case, being the latest generations of NVIDIA graphics cards equipped with tensor cores 

[14]. 

Considering the above, in this paper, it is shown that even simple engines like the proposed 

one, can be enhanced, as the network may receive training input from both the initial source 

and a more accurate one, so that simulations can surpass the original engine in both speed 

and accuracy. 

 

3. Proposed solution 

The proposed system uses a fully connected neural network fed with the raw velocities that 

the objects are having. As a proof of concept, a simple physics engine [15] that uses 

Newton’s laws in applying impulses between colliding objects is employed. This engine is 

acting as a data generator for the neuronal network. Positions, velocities and angular 

velocities of the two objects before and after the collision are used, as these are the only 

values that the physics engine is manipulating when applying an impulse between them. 

After this, a fully connected neural network, with an input layer of 10 neurons (for the 

positions, velocities and angular velocities as all these values matter before a collision) and 

an output layer of 6 neurons (only for the resulting velocities and angular velocities of the 

two objects) is employed. 

During the preliminary tests, there were analyzed and tested different configurations 

varying from one hidden layer and up to four hidden layers, with several neurons around 

the average between the input layer and the output layer. Once an accuracy of more than 

90% is obtained, the network configuration is saved and loaded in the physics engine, thus 

replacing the traditional code where the relative velocity at contact is calculated. 

A. Demonstrator application architecture details 

For the network to be trained, it is necessary to input and output data that would correctly 

represent the logic used by the actual physics engine to calculate the collision between two 

objects and what the resulting velocities of these bodies are, after the contact. 

Keeping this in mind, data was collected from the running physics engine under some demo 

tests (“scenarios”) where objects were colliding randomly, and the positions of the two 

objects were extracted as input data, as well as their velocities and angular velocities 

between the impact, and as output data, the resulting velocity and angular velocity after the 

contact were extracted. 

As this data is represented in the XY coordinates, the initial data was not very helpful for 

the neural network as the differences between two sets of inputs for example (and the same 

thing for the corresponding sets of outputs) were too big, and the neural network was failing 

to learn from them. So, another representation of the data was made by choosing to extract 

the difference between the positions of the bodies for input, and the relative velocity 
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resulted from the impact as output. Thus, the inputs and the outputs between two different 

collisions were a lot smaller and the neural network could learn from it. 

The Box2D [15] physics engine was very helpful in generating the data because in a 

“scenario” where multiple objects may collide, the physics engine is splitting the whole 

scene into pairs of two objects colliding and updates for each pair the resulting velocities. 

An example for collecting data for training can be seen in Fig. 5. 

      

Fig.5. Generating training data from the physics engine. 

The collected data is then divided by the 80/20 rule for training/testing of the neural 

network. From training it was discovered that the data could not be used in its raw format 

as it was again, not good enough for the neural network to learn. In its raw format, it was 

possible to obtain a maximum of 60% accuracy, even with different learning rates, 

activation functions used, or a different number of hidden layers and neurons per hidden 

layer. 

One problem that needs to be taken into account is the presence of different intervals 

between the generated outputs, and the outputs the activation function was able to produce. 

The outputs generated from the “scenarios” used were somewhere between [-300, 300] 

range while classic activation functions such as sigmoid or tanh or ReLU (Rectified Linear 

Unit) were producing outputs that could not map the generated one. Although these 

activation functions may not produce the desired output on the last layer, they still can be 

used in the hidden layers. One approach for resolving this interval mapping would be to 

standardize the data [15], by calculating the mean value and standard deviation of the output 

and rescaling the distribution of values so that the mean of observed values is 0 and the 

standard deviation is 1. 

After the network predicts an output, one can reverse the data standardization process to 

bring it to the original output generated by the physics engine. Another step used to increase 

the network accuracy and minimize the loss function was to use the linear activation 

function on the output layer as this can map the desired interval. 

This increased the accuracy to almost 90% without using any optimizers for the neural 

network hyperparameters. The next step to increase the accuracy as most as possible is 

adding optimizers on the neural network to help it converge to the global minimum for the 

loss function. 
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B. Preliminary performance measurements 

Currently, without any optimizations on the neural network learning, the accuracy is under 

90%. This may sound enough, but it is not, as the loss function for this accuracy is above 

0.1 and the predicted relative velocity is still not close to the real one. 

There was applied the same optimization techniques were applied in [12] and managed to 

minimize the loss function below 0.05 after only 1000 training iterations. Here, hyper-

parameters like the number of neurons and the number of hidden layers could be adapted 

as the target is to go under a 0.001 loss function. 

It was chosen a one hidden layer network of 10 neurons, while the input layer is also 10 

neurons because of all the used input data, and the output layer is two neurons because of 

the velocity derivative used to calculate the final velocities of two objects colliding (the 

velocity is expressed in bot Ox and Oy axis). Both hidden and output layers use the classic 

sigmoid activation function. 

Of course, one problem arises and that is the fact that the output generated by the physics 

engine can be in any floating interval of values (in the presented “scenarios” going from   -

300 to 300 in the (x, y) coordinates), while the sigmoid function can output data in the [0, 

1] interval. For resolving this problem, the output data is normalized before feeding it to 

the neural network for training from the minimum and maximum available values to the [0, 

1] interval so that this new output can be compared to the output of a sigmoid function [15]: 

𝑦 =
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

 

(1) 

In equation (1), the x value represents the initial output obtained from the generated data 

set, and y represents the normalized output that fits in the [0, 1] interval. 

C. Fine-tuning the neural network 

For achieving a smaller loss function some fine-tuning was needed to be applied to the 

training data set as this is the biggest factor that influenced the accuracy of the neural 

network. It has passed from using randomly generated data sets to well-defined generated 

data. This was done by selecting an interval of points where the launched object (called the 

“bomb”) was generated. In the first iteration, this set of (x, y) points was generated randomly 

in the interval [15, 15] for the Ox axis. The y point was maintained fixed at the value of 15. 

The angular velocity and rotation were also generated randomly. 

With this approach, there was obtained loss functions close to the intended one, but in a 

realistic simulation of the neural network inside the engine (the logic that was used to 

calculate the derivative velocity at contact was replaced by the neural network), there were 

still cases where the network did not perform as intended. This is because of the random 
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nature of the generated data set that might have been generated more around some cases 

and less around others. 

Keeping this in mind, randomly generated data sets were left behind and an iterative method 

that would cover a set of cases equally was chosen. This was done by iterating through the 

initial Ox interval of [-15, 15] with a small step of 0.05. To help the network even more, 

this interval was reduced in [-5, 5] and incorporate two different "scenarios": one where a 

single box was hit by the “bomb” box, and one where a stack of 10 boxes was hit by the 

same “bomb” box (this meant that the “bomb” was launched from the same position for 

both “scenarios”). 

Another constraint applied to the training phase was to go with a fixed angular velocity and 

rotation because the random nature of the generated ones produced the same outcome, 

where the network performed well for some cases and bad for others. 

After applying these constraints, generating the training data upon them and training the 

neural network with the data set there were obtained loss functions in the range of 10-4 after 

5000 iterations of training. The table below (TABLE 1) indicates the loss function resulted 

in a training cycle of 2000 iterations. 

Iteration Test Score Train Score 

0 0.102988 0.103005 

10 0.051049 0.051049 

50 0.017851 0.017834 

100 0.008923 0.008907 

1000 0.001305 0.001304 

2000 0.000803 0.000800 

TABLE 1. Loss function resulted in a training cycle of 2000 iterations with the described 

constraints for the training data. 

 

Fig.6. Evolution of loss function over the 2000 iterations with dynamic learning rate. On 

Oy axis is the loss function and on the Ox axis is the number of training iterations. 
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4. Results 

In Fig. 7 it can be seen the two “scenarios” used for generating training data for the neural 

network (single object – first row and stack - second row). Along with these two, is a more 

complex “scenario” (pyramid – third row), all of these being later used as a reference for 

checking how well the network behaves after it has been trained. 

 

 

 

Fig.7. “Scenarios” denoted 1 (first row) and 2 (second row), that generate training data by 

simulating contacts between two objects (“scenario” 1) and an object and a stack of other 

ten objects (“scenario” 2); “scenario” denoted 3 (third row) consisting of a pyramid of 66 

objects. 
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The generation of training data consists of launching an object (the purple square called the 

“bomb”) into another object, or a stack of ten objects. The bomb starts from the position (-

5, 15) and iterates through the final position (5, 15) with a step of 0.05, getting data from 

both “scenarios” with the same position of the “bomb” object. The input data collected 

represents the positions of two objects that are about to collide (in Cartesian coordinates), 

and their velocities, angular velocities, and rotations. The output data represents the 

derivative (in Cartesian coordinates) that are then applied to the initial velocities before the 

contact resulting in the final velocities (and directions) of the objects after the contact. 

The loss function is the MSE (Mean Square Error) function, and it is about 10-4 for the 

network. With this loss function value, still there are errors as it can be expected, because 

this value does not reflect an accuracy of 100% which would mean a perfect replica of the 

physics engine used for training. 

The network also adds a performance impact on the physics engine. This is expected, as the 

neural network presents a higher level of computation than the original physics engine that 

used a simple Newtonian equation to calculate the derivative of the velocity. For simple 

“scenarios” like “scenario” 1 and “scenario” 2, this impact is not observed as both the 

physics engine and neural network obtain the same performance, but for a more complex 

“scenario” with a big number of objects interacting (“scenario” 3), the computation 

necessary for the neural network prediction is way bigger than what the traditional engine 

would calculate, and this has an observable impact on the graphical performance. 

 

Fig.8. Evolution of prediction fail percentage over the total number of randomly 

generated simulation tests. On the Oy axis is the failure percentage of the neural network 

prediction and on the Ox axis is the total number of simulation tests. 
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As it can be seen in Fig. 8, the neural network achieves a successful prediction rate between 

55% and 89% depending on the test “scenario”. Unfortunately, this is not a desirable 

prediction rate, especially because there is not a constant percentage for all test “scenarios”. 

This shows that classic neural networks are not suitable for this kind of application as it 

needs an accuracy of over 90% (even 95%) to be able to accurately replace the physics 

engine. 

 

5. Conclusion 

It is possible to use a neural network for replicating a physical engine in certain scenarios 

at an acceptable accuracy (the one obtained here could be improved by generating a bigger 

data set, by using a longer training time, and by tuning hyper-parameters, but the classic 

approach (especially the classic activation functions) cannot fully replace the physics 

engine. Also using a neural network just for predicting the collisions of objects for this case 

is not favorable as the performance is impacted and for a simple engine such as the 

presented one, it is better to use the traditional ways of expressing the physics equations. 
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